I] Suites arithmético-géométriques

Ce sont des suites définies par : $u_{n+1} = a u_n + b$ et par la donnée du premier terme u_0 .

a) Pour les exemples suivants, tracer dans un repère $(0; \vec{i}; \vec{j})$ orthonormal, "le chemin de la suite" et observer la convergence éventuelle :

$$\begin{cases} u_{n+1} = \frac{2}{5}u_n + 3 \\ u_0 = 2 \end{cases} \qquad \begin{cases} u_{n+1} = 2u_n - 3 \\ u_0 = 4 \end{cases} \qquad \begin{cases} u_{n+1} = -\frac{2}{3}u_n + 6 \\ u_0 = 1 \end{cases}$$

- b) Si a = 0, la suite est stationnaire à partir du rang 1 et est égale à b.
- c) Si $a = 1 : u_{n+1} = u_n + b$: cas d'une suite arithmétique où on obtient un terme en ajoutant au précédent une constante b appelée raison. Alors

$$u_n = u_0 + n b$$
 ou $u_n = u_1 + (n-1) b$; $u_p = u_q + (p-q)b$

Somme des premiers termes d'une suite arithmétique :

$$u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n = \frac{(n+1)(u_0 + u_n)}{2}$$

$$On \ peut \ aussi \ retenir : \boxed{Somme \ des \ termes = \frac{\left(\ n^{bre} \ de \ termes \ \right) \times \left(\ 1^{er} \ terme + dernier \ terme \ \right)}{2}} \\ \underline{Propriété :} \ Pour \ démontrer \ qu'une \ suite \ (u_n) \ est \ arithmétique, \ il \ faut \ que \ u_{n+1} - u_n \ soit \ une \ constante.}$$

Exercice 1 : u est la suite de réels strictement positifs définie par u_0 = 1 et $u_{n+1} = \frac{u_n}{u_n + 1}$. v est la suite définie

par $v_n = 1/u_n$.

- a) Calculer u_1 , u_2 , u_3 , u_4 puis v_0 , v_1 , v_2 , v_3 et v_4 .
- b) Démontrer que v est une suite arithmétique.
- c) En déduire v_n puis u_n en fonction de n.
- d) Justifier le sens de variation de la suite v.

Exercice 2 : Calculer la somme des 100 premiers entiers naturels pairs non nuls.

d) Si b = 0 : u_{n+1} = a u_n : cas d'une suite géométrique où on obtient un terme en multipliant le précédent par une constante a appelée raison. Alors $u_n = u_0 a^n$ ou $u_n = u_1 a^{n-1}$ $u_p = u_q a^{p-q}$

Somme des premiers termes d'une suite géométrique :

$$u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n = u_0 \times \frac{1 - a^{n+1}}{1 - a} \quad pour \ a \neq 1$$

On peut aussi retenir : Somme des termes =
$$1^{er}$$
 terme $\times \frac{1 - (raison)^{n^{bre} de \ termes}}{1 - raison}$

Propriété : Pour démontrer qu'une suite (u_n) est géométrique, il faut que $u_{n+1} = q u_n$ (ou bien que si $u_n \neq 0$, alors $un_{+1} \div u_n$ soit une constante).

<u>Propriété</u>: Toute suite géométrique de raison q avec $|\mathbf{q}| < 1$, converge vers 0.

Exercice 3: u est la suite définie sur \mathbb{N} par $u_n = \frac{3^{n+3}}{5^n}$.

- a) Démontrer que u est une suite géométrique.
- b) Justifier le sens de variation de la suite u.

Exercice 4 : Calculer S = 2 + 4 + 8 ++ 256

e) Si a \neq 1 et b \neq 0, pour calculer le terme général de $\left(u_n\right)_{n\in\mathbb{N}}$ de façon explicite en fonction de n, on se ramène au cas de la suite $\left(v_n\right)_{n\in\mathbb{N}}$ définie par : v_n = u_n - α avec $\alpha = \frac{b}{1-a}$ (α =a α +b) une constante réelle telle que la suite $\left(v_n\right)_{n\in\mathbb{N}}$ soit géométrique. On en déduira alors v_n , puis u_n en fonction de n.

Exercice 5 : On considère la suite définie par $u_0 = 5$ et $u_{n+1} = 2 u_n - 3$.

Montrer que la suite définie par $v_n = u_n - 3$ est une suite géométrique dont vous exprimerez le premier terme et la raison. En déduire une expression de v_n , puis u_n en fonction de n.

II] Convergence

1) Théorème des gendarmes : (admis) soit $\left(u_n; v_n; w_n\right)_{n \in \mathbb{N}}$ un triplet de suites telles que les suites $\left(u_n\right)_{n \in \mathbb{N}}$ et $\left(w_n\right)_{n \in \mathbb{N}}$ convergent vers la même limite ℓ et vérifient , pour n assez grand , les relations $u_n \leq v_n \leq w_n$. Alors la suite $\left(v_n\right)_{n \in \mathbb{N}}$ converge aussi vers ℓ .

 $\underline{\textbf{Corollaire}}\colon \text{ Si } \left(\textbf{U}_{\textbf{n}}\right)_{\textbf{n}\in\mathbb{N}} \text{ diverge vers + } \infty, \\ \left(\textbf{V}_{\textbf{n}}\right)_{\textbf{n}\in\mathbb{N}} \text{ aussi . Si } \left(\textbf{W}_{\textbf{n}}\right)_{\textbf{n}\in\mathbb{N}} \text{ diverge vers - } \infty, \\ \left(\textbf{V}_{\textbf{n}}\right)_{\textbf{n}\in\mathbb{N}} \text{ aussi . }$

<u>Propriétés</u>: Toute suite arithmétique de raison r > 0 est croissante et diverge vers + ∞ .

Toute suite arithmétique de raison r < 0 est décroissante et diverge vers - ∞ .

Toute suite géométrique de raison q avec $|\mathbf{q}| < 1$, converge vers 0.

- 2) Propriétés (admises):
 - a. Si une suite croissante est majorée par M , alors elle est convergente vers L et L≤M.
 - b. Si une suite décroissante est minorée par m , alors elle est convergente vers L et L≥m.
- 3) Propriété : (démontré dans le chapitre des limites)
 - a. Une suite croissante non majorée diverge vers $+ \infty$.
 - b. Une suite décroissante non minorée diverge vers $-\infty$.

Exercice 6: On considère la suite (u) définie sur \mathbb{N} par : $u_0 = 10\,000$ et $u_{n+1} = 0.8\,u_n + 5\,000$.

- 1) Calculer u₁, u₂ et u₃.
- 2) Démontrer par récurrence que (u) est majorée par 25 000.
- 3) Démontrer que la suite (u) est croissante.
- 4) Etudier la convergence de la suite (u) et en déduire sa limite.

III] Suites adjacentes

- 1) <u>Définition</u>: Deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites <u>adjacentes</u> si :
 - a. La suite $\left(u_{n}\right)_{n\in\mathbb{N}}$ est croissante .
 - b. La suite $(V_n)_{n\in\mathbb{N}}$ est décroissante.
 - c. La suite $(u_n v_n)_{n \in \mathbb{N}}$ converge vers 0.
- 2) Théorème (A démontrer) ROC : Deux suites adjacentes ont la même limite.

Exercice 7: Soient les suites u, v, w et t définies par : $u_0 = 2$, $v_0 = 3$, $u_{n+1} = \frac{3u_n + 2v_n}{5}$, $v_{n+1} = \frac{2u_n + 3v_n}{5}$,

$$w_n = v_n - u_n$$
 et $t_n = u_n + v_n$.

- a) Montrer que la suite w est géométrique.
- b) Démontrer par récurrence que, pour tout entier naturel n, $w_n > 0$.
- c) Montrer que les suites u et v sont adjacentes.
- d) Montrer que la suite t est constante et en déduire la limite commune des suites u et v.