Baccalauréat STG Mercatique, CFE et GSI

12 Novembre 2007 Nouvelle Calédonie

EXERCICE 1:

1. Formule: $1 + T = (1 + t_1) (1 + t_2) (1 + t_3) (1 + t_4) (1 + t_5)$ Donc 1 + T = (1 - 0.2007) (1 + 0.3379) (1 - 0.1570) (1 + 0.3765) (1 + 0.5294) = 1.8978D'où T = 0.8978 = 89.78 %

2. Prix en 2001 × (1+ T) = 52 donc prix en 2001 =
$$\frac{52}{1,8978}$$
 = 27,40 €

3. a) Formule :
$$1 + T = (1 + t_m)^n$$
 donc $t_m = (1 + T)^{1/n} - 1 = 1,8978^{1/5} - 1 = 13,67 \%$
b) en 2007 : prix du baril = $52 \times (1 + 13,67\%) = 52 \times 1,1367 = 59,11 \in$

EXERCICE 2:

1. Tableau

	Défectueuses	En bon état	Total
Usine de Bordeaux	160	3200	3360
Usine de Grenoble	66	1200	1266
Usine de Lille	154	3500	3654
Total	380	7900	8280

2. a)
$$p(B) = \frac{3360}{8280} \approx 0,406$$
 b) $p(D) = \frac{380}{8280} \approx 0,046$

b)
$$p(D) = \frac{380}{8280} \approx 0.046$$

c) B \cap D = « l'alarme provient de l'usine de Bordeaux et est défectueuse »

$$p(B \cap D) = \frac{160}{8280} \approx 0.019$$

d) Formule :
$$p(B \cup D) = p(B) + p(D) - p(B \cap D) = \frac{3360}{8280} + \frac{380}{8280} - \frac{160}{8280} = \frac{3580}{8280} \approx 0,432$$

e)
$$p_B(D) = \frac{160}{3360} \approx 0,048$$

et
$$p_G(D) = \frac{66}{1266} \approx 0$$
, 052 ; $p_L(D) = \frac{154}{3654} \approx 0$, 042 donc Lille est l'usine la plus efficace.

EXERCICE 3: Partie A

1	
1	

1.				
Fonction	f_1	f_2	f_3	f_4
Tableau de signes	b	d	С	a
2.				
Fonction	f_1	f_2	f_3	f_4
Variation	С	b	a	d
3.				
Fonction	$\overline{f_1}$	f_2	f_3	f_4
Signe de dérivée	c	b	d	a

Partie B:

1.
$$g(x) = (1-x) \times (x+1)^2 = (1-x) \times (x^2+2x+1) = x^2+2x+1-x^3-2x^2-x$$

 $g(x) = -x^3-x^2+x+1$

2.
$$g'(x) = -3x^2 - 2x + 1$$

or
$$(x + 1)(1-3x) = x - 3x^2 + 1 - 3x = -3x^2 - 2x + 1 = g$$
 '(x)

3. Tableau des signes : Valeurs particulières : x + 1 = 0 donc x = -1 et 1-3x = 0 donc x = 1/3

X	-2	-1		1/3		1
x + 1	-	0	+		+	
1-3x	+		+	0	-	
g ' (x)	-	0	+	0	-	
g(x)	3	0/		32/27		~ 0

4. $g = f_1$ d'après les tableaux de la partie A

EXERCICE 4:

Donc

Dates	Annuité	Intérêts	Amortissement	Capital restant dû
01/01/2007	64 752,29	18 734,05	46 018,24	328 662,67

2. a)
$$C3 = E2 \times 0.05$$
 ; $C4 = E3 \times 0.05$

b)
$$E3 = E2 - D3$$

3.
$$i_2 = 23\ 012,39$$
; $i_3 = 20\ 925,39$; $i_4 = 18\ 734,05$
 $a_1 = 39\ 752,29$; $a_2 = 41\ 739,90$; $a_3 = 43\ 826,90$; $a_4 = 46\ 018,24$
 $c_1 = 460\ 247,71$; $c_2 = 418\ 507,81$; $c_3 = 374\ 680,91$; $c_4 = 328\ 662,67$

4.
$$\frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = 1,05$$
 donc la suite (a_n) est une suite géométrique de raison 1,05

- 5. a₁ + a₂ + + a₁₀ = correspond à l'amortissement du prêt, donc d'après l'énoncé, le capital de 500 000 € est remboursé.
- **6.** (a_n) est une suite géométrique donc on a la formule : $a_1 + a_2 + \dots + a_{10} = a_1 \frac{(1-q^n)}{(1-q)}$

D'où
$$a_1 + a_2 + + a_{10} = 39752,29 \times \frac{(1 - 1,05^{10})}{(1 - 1,05)} = \frac{39752,29}{0,05} \times (1,05^{10} - 1) = 795045,8 \times (1,05^{10} - 1)$$

= 500 000,0317 ≈ 500 000 €

7. montant total des intérêts = total des annuités – prêt = $10 \times 64752,29 - 500000 = 147522,9 \in$