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The world of polyhedra* 

by Reverend Magnus Wenninger, St. Augustine's College, Nassau, Bahamas 

Geometrical solids can become the sub 

ject of a fascinating study. Not everyone, 
of course, will want to make the attempt 
to understand all the theoretical mathe 

matics involved in discovering and classi 

fying those solids known as uniform poly 
hedra and their stellated forms. But every 
one surely can appreciate the beauty and 

symmetry of these solids, whose history is 
as ancient as Plato, Archimedes, and 
Euclid and as modern as Coxeter, today a 

well-known professor of mathematics at 

the University of Toronto. 
It is a fact well known to anyone ac 

quainted with mathematics that the Thir 
teen Books of Euclid's Elements, for cen 

turies the only textbook of geometry, be 

gins with a proposition describing how to 

construct an equilateral triangle and ends 

with five propositions on the so-called five 

Platonic solids. These five solids are 

the tetrahedron, octahedron, icosahedron, 
hexahedron (cube), and dodecahedron. 
The last proposition in Euclid's Elements 
states that no other solids with congruent 
regular polygons as faces are possible, and 
the proof of this proposition brings this 
famous work to a close. 

As history moved into the modern era, 
interest in polyhedra revived in the same 

way as interest in many other fields of hu 

* Presented at the Minneapolis Meeting of the 
National Council of Teachers of Mathematics, 
August 20, 1964. 

man knowledge. The astronomer Johannes 

Kepler (1571-1630) was fascinated by the 

relationships among the five Platonic 

solids, and he even tried to work out 
a mathematical relationship connecting 
these solids with the distances between the 
sun and the planets known in his day. 
Some data in his theory approached 

reality closely enough to appear convinc 

ing, but further investigation eventually 
made his theory hopelessly inadequate. 
But Kepler's study of polyhedra did lead 

him to discover two new solids which, in 
an extended way, can be called regular, 
and thus he added something to the world 

of polyhedra. He came to his discovery 
when he noticed that producing the sides 

of an equilateral triangle or of a square 
will not lead to new polygons, but produc 

ing the sides of a pentagon will lead to a 

star polygon. Therefore, by taking the 

dodecahedron and producing each of its 

edges, a new solid will be formed whose 

faces can be thought of as a set of twelve 

interlocking or intersecting star polygons, 

meeting five at each vertex with twelve 

vertices in all. This new solid was later 

named the small stellated dodecahedron. 

Kepler also discovered the great stellated 

dodecahedron, which also has twelve star 

polygons as faces, meeting three at each 
vertex with twenty vertices in all. 

Almost two hundred years later, in 

1809, the French mathematician Louis 
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Poinsot (1777-1859) discovered two more 

regular polyhedra, the great dodecahe 

dron, having twelve mutually intersecting 
pentagons as faces, and the great icosahe 

dron, with twenty mutually intersecting 
equilateral triangles as faces. Augustin 
Louis Cauchy (1789-1857), another fa 
mous mathematician of this time, showed 
that these arise by stellating the dodeca 
hedron and the icosahedron respectively, 
and he also proved that the four Kepler 
Poinsot solids exhaust the list of finite 

regular polyhedra. In other words, to 
Plato's original five, modern mathe 

matics, in an extended way, has added 
four more, bringing the total to nine reg 
ular solids. 

In the case of the icosahedron, the proc 
ess of stellation leads to polyhedra that 
are not regular in the sense used above 
but which nevertheless possess great 
beauty and symmetry. The process of 
stellation may be described as follows. 

Any one of the five Platonic solids may be 

imagined as resting on a horizontal plane, 
say a table top. The plane of the table top 

may thus be imagined to be the extension 
of the base plane of the solid. Next, each 
face of the solid may similarly be imagined 
with its own extended facial plane. Some 

planes turn out to be parallel. Those 
which are not parallel will intersect. The 
four intersecting planes of the tetrahedron 
enclose only the tetrahedron itself. The 
same thing happens with the cube; the six 

planes enclose only the cube itself. The 

eight planes of the octahedron lead to 

something more interesting. Besides the 

original octahedron, there will be eight 
small tetrahedra, each with one of its 
faces in common with one of the faces of 
the octahedron. Thus the octahedron 
leads to one stellated form, which Kepler 
called the stella octangvla, the eight 
pointed star. It may also be thought of as 
a compound of two interpenetrating 
tetrahedra. It also has the property that 
its eight points or vertices coincide with 
the eight vertices of a cube; its edges are 

diagonals of the square faces of a cube. 

With the dodecahedron, this method of 

stellating a solid by producing its facial 

planes leads to the formation of three dis 
tinct types of cells enclosed by the inter 

secting planes. Besides the dodecahedron 

itself, there will be twelve pentagonal 
pyramids. These convert the dodecahe 
dron into the small stellated dodecahe 
dron. Then there will also be thirty sphe 
noids, or wedge-shaped pieces, which con 

vert the small stellated dodecahedron into 
the great dodecahedron. Finally, there will 
be twenty triangular dipyramids which 
convert the great dodecahedron into the 

great stellated dodecahedron. Thus, the 
dodecahedron leads to three stellated 
forms. As noted before, two of these were 

discovered by Kepler, the third by Poin 
sot. 

What we may call the exterior parts of 
these stellated forms may easily be found 

by drawing what is called a stellation pat 
tern. For the octahedron, this is a triangle 
within a triangle, the inner one with its 
vertices at the midpoints of the sides of the 

outer one. (See Fig. 1.) For the dodecahe 

dron, a star polygon within a star polygon 
will give the pattern (Fig. 2). 

Stellations of the icosahedron may all 

be derived from the cells enclosed within 
the twenty intersecting facial planes of the 
icosahedron. Besides the icosahedron it 

self, we will find 20, 30, 60, 20, 60, 120, 
12, 30, 60, 60 cells of ten different shapes 
and sizes. The great icosahedron, dis 
covered by Poinsot, is composed of all but 

Figure 1 
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Figure 2 

the last 60 pieces. Other stellations include 
a compound of five octahedra, a compound 
of five tetrahedra in two forms, dextro and 

laevo, and a compound of ten tetrahedra 

composed of both the latter forms com 
bined. After these forms were discovered, 
the question naturally presented itself: 
How many stellated forms are possible? 
In 1900, Max Br?ckner, who published a 
classic work on polyhedra entitled Vielecke 
und Vielfl?che, presented a number of new 
stellations of the icosahedron. Several 

more were due to A. H. Wheeler (1924). 
In 1938, H. S. M. Coxeter, in conjunction 
with P. DuVal, H. T. Flather, and J. F. 

Petrie, gave the question a systematic in 

vestigation. By applying a few restrictive 
rules suggested by J. C. P. Miller to deter 

mine what forms shall be considered prop 
erly significant and distinctive, Coxeter 
arrived at a total enumeration of fifty 
nine, 32 different solids all having the full 
icosahedral symmetry, and 27 enantio 

morphous forms (that is, dextro or laevo) 
having an attractively twisted appear 
ance. Coxeter's work on The Fifty-nine 
Icosahedra is available from the University 
of Toronto Press in a 1951 reprint. In the 

past three years, I have worked out my 
own construction nets and methods of 

assembly for a model of each of these 

fifty-nine icosahedra. Anyone who spends 
a good deal of time on the construction of 

polyhedra will soon learn that no matter 

Figure 3 

how many have been made, each one pre 
sents its own challenge and is a source of 

unique satisfaction upon completion. 
The stellation pattern for the icosahe 

dron is very interesting. It is most easily 
obtained by drawing one of the equilateral 
triangles that form the faces of the great 
icosahedron. On each side of this triangle 

we may locate two points dividing the 
sides of the triangle in golden ratio. Lines 

radiating from these points will give the 

pattern. (See Fig. 3.) 
So far we have discussed the five Pla 

tonic solids and their stellations. There is 
another set of solids known as the Archi 

medean, or semiregular, solids. These all 
have regular polygons as faces but admit 
a variety of such polygons in one solid. 
There are thirteen of these and they are 

ascribed to Archimedes (287-212 b.c.), 
because he first enumerated them, though 
his work on them is lost. References to the 
work of Archimedes on this subject are 

found in the writings of Pappus, a mathe 
matician of the fourth century a.d. Kepler 
was the first to formulate a complete 
theory concerning them. 

It would be possible to stellate all the 
Archimedean solids by the same process as 
was indicated for the Platonic solids, 
namely, by producing each facial plane 
and imagining the stellated forms as being 
built from the various cells enclosed by the 

intersecting planes. But little investiga 
tion along these lines has been published. 
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The same may be said about still another 

set of polyhedra known as the Archi 

medean duals, which instead of being 

facially regular are vertically regular. 

Being duals, there are also thirteen of 

them. Two of the most interesting ones 

are the rhombic dodecahedron and the 

rhombic triacontahedron, both discovered 

by Kepler. Stellated forms of the first 

named solid were studied by Dorm?n 

Luke and published in the 1961 edition of 
Mathematical Models by Cundy and Rol 

lett. One of the stellations of the second 

named solid is a compound of five cubes. 

Here, too, we find the golden ratio divid 

ing the sides of each square face of the 

cubes. Some other stellations of the tria 

contahedron were investigated by J. D. 

Ede and published, without drawings 
other than the stellation pattern, in 1958 

in the Mathematical Gazette in England. 
Perhaps the reason for so little investi 

gation of stellated Archimedean forms is, 

first, that here the work involved begins 
to assume the aspects of an endless quest ; 
the possibilities become bewilderingly 
numerous. However, rather than seek to 

enumerate these seemingly infinite varie 

ties of geometrical forms, we might ask a 

question of another kind. Is there, per 

haps, a functional relationship between 

the number of faces of a regular or semi 

regular solid and the number of distinct 

cells enclosed by the intersecting facial 

planes? Perhaps some day some mathe 

matician may discover a relationship 

analogous to that of Euler's constant for 
convex polyhedra: V ? E+F = 2. Another 
reason for so little work on stellated 

Archimedeans is perhaps to be found in 

the fact that many of these are not par 

ticularly attractive or aesthetically pleas 

ing. Mathematicians, after all, are human, 
and where investigation has no practical 

significance there must yet be some kind 

of motivation, such as beauty of form. 

The study of polyhedra can be pursued 
from still another point of view, one 

which branches into the world of uniform 

polyhedra. A polyhedron is said to be uni 

form if its faces are regular polygons, 
which may be interlocking or intersecting, 
while all its vertices are alike. Again, it 
was H. S. M. Coxeter, working this time 
with M. S. Longuet-Higgins and J. C. P. 

Miller, who published a scholarly paper 
on the subject in 1954 entitled "Uniform 

Polyhedra" (Phil. Trans. Roy. Soc. Lon 

don, A 264, 401-50). The five Platonic 

solids, the thirteen Archimedean solids, 
the four Kepler-Poinsot star polyhedra all 

belong to this set of uniform polyhedra. 
Such a polyhedron can be enclosed within 
a sphere, its center coinciding with the 
center of the sphere and all its vertices 

lying in the surface of the sphere. The 

planes of symmetry of the solid will thus 

partition the surface of the sphere into a 

tessellated network of spherical triangles. 
Those arising from the Platonic solids 
were first investigated by Augustus Ferdi 

nand M?bius (1790-1868) in 1849. Her 
mann Amandus Schwarz (1843-1921) ex 

tended the theory to other tessellated net 

works of triangles on a spherical surface in 

1873. W. A. Wythoff successfully ex 

ploited this theory to investigate poly 

topes, as they are called, in four-dimen 
sional space, in 1918. The study of uni 

form polyhedra done by Coxeter and his 

associates was based on a systematic ap 

plication of WythofTs construction to all 

possible Schwarz triangles. According to 

Coxeter, "The earliest complete enumera 

tion of convex uniform polyhedra was 

made by Kepler (1619), who observed 

that the definition includes also the 

prisms with square side faces and the anti 

prisms with equilateral triangular side 

faces." Thus the prisms and antiprisms 

belong to an infinite set since both have 

end faces which may be any regular n-gon. 
Some other historical notes supplied by 
Coxeter are: Two new uniform polyhedra 
were discovered by Edmund Hess (1843 
1903) in 1878, 37 others by A. Badoureau 
in 1881, and 18 by Johann Pitsch in 1881, 

working independently. Briickner illus 

trated many of these in his book published 
in 1900. Between 1930 and 1932, Coxeter 
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and Miller discovered 12 other uniform 

polyhedra. Between 1942 and 1944, Lon 

guet-Higgins rediscovered many of these, 
including 2 not previously published. Thus 

Coxeter's enumeration published in 1954 
lists 53 other uniform polyhedra besides 
the 9 regular and 13 semiregular, or 

Archimedean, solids a total of 75. 
One remarkable new polyhedron is con 

tained in Coxeter's 1954 list. It is excep 

tional, insofar as it is the only one which 
cannot be derived immediately from a 

spherical triangle by WythofFs construc 
tion. It is the only known polyhedron that 
has more than six faces at each vertex. The 
vertices of two triangles, four squares, and 
two star polygons, a total of eight poly 
gons, are found at each vertex of this 

strange polyhedron. 
To quote Coxeter once more by way of 

conclusion, "We shall be much surprised if 

any new uniform polyhedron is found in 
the future." And again, "It is the authors' 
belief that the enumeration (namely 75 in 

all) is complete although a rigorous proof 
has still to be given." So the last word has 

not yet been written. And, as we find in 

every field of human inquiry, so here, too, 
mathematical investigation is still possible 
in the bewildering and beautiful world of 

polyhedra. 
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The history of the dodecahedron 

by J. P. Phillips, University of Louisville^ Louisville, Kentucky 

Of the five regular solids, the dodeca 
hedron has many claims to the most com 

plex history. Unlike the others (cube, 
tetrahedron, octahedron, and icosahe 

dron), which originated before historical 
records were kept, tradition assigns the 

discovery of the dodecahedron to Hip 
pasus, a Pythagorean of the fifth century 
before Christ [1].* For his impiety in de 

vising an addition to the perfect solids 

given by the gods he was lost at sea, ac 

cording to the legend. 
In the fourth century before Christ, 

when Plato (in the Timaeus) associated the 
other four regular solids with the four ele 

* Numerals in brackets refer to the Notes at the 
end of the article. 

ments?earth, air, fire, and water?he 

assigned the sphere of the universe to the 

dodecahedron, possibly because there were 
no more elements to pair with another reg 
ular solid, but also because the volume of 
a regular dodecahedron inscribed in a 

sphere is closer to that of the sphere than 
the volume of any other inscribed regular 
solid, f In recognition of Plato's uses of 

them, incidentally, the five regular convex 
solids are often called the Platonic bodies. 

t Editorial Note. The uninitiated will almost 
always intuitively but incorrectly believe that of a 

regular dodecahedron (a regular solid of 12 pentagonal 
faces) and a regular icosahedron (a regular solid of 20 
triangular faces) inscribed in the same sphere, the 
icosahedron has the greater volume. Of the cube and 
regular octahedron inscribed in the same sphere, the 
cube has the larger volume. 
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